3.1.75 \(\int \frac {1}{x (a+c x^2)^{3/2} (d+e x+f x^2)} \, dx\)

Optimal. Leaf size=526 \[ -\frac {\tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{a^{3/2} d}-\frac {a \left (a f^2+c \left (e^2-d f\right )\right )+c^2 d e x}{a d \sqrt {a+c x^2} \left ((c d-a f)^2+a c e^2\right )}+\frac {f \left (2 e \left (a f^2+c \left (e^2-2 d f\right )\right )-\left (e-\sqrt {e^2-4 d f}\right ) \left (a f^2+c \left (e^2-d f\right )\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \left ((c d-a f)^2+a c e^2\right ) \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {f \left (2 e \left (a f^2+c \left (e^2-2 d f\right )\right )-\left (\sqrt {e^2-4 d f}+e\right ) \left (a f^2+c \left (e^2-d f\right )\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \left ((c d-a f)^2+a c e^2\right ) \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {1}{a d \sqrt {a+c x^2}} \]

________________________________________________________________________________________

Rubi [A]  time = 2.18, antiderivative size = 526, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 9, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {6728, 266, 51, 63, 208, 1017, 1034, 725, 206} \begin {gather*} -\frac {\tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{a^{3/2} d}-\frac {a \left (a f^2+c \left (e^2-d f\right )\right )+c^2 d e x}{a d \sqrt {a+c x^2} \left ((c d-a f)^2+a c e^2\right )}+\frac {f \left (2 e \left (a f^2+c \left (e^2-2 d f\right )\right )-\left (e-\sqrt {e^2-4 d f}\right ) \left (a f^2+c \left (e^2-d f\right )\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \left ((c d-a f)^2+a c e^2\right ) \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {f \left (2 e \left (a f^2+c \left (e^2-2 d f\right )\right )-\left (\sqrt {e^2-4 d f}+e\right ) \left (a f^2+c \left (e^2-d f\right )\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \left ((c d-a f)^2+a c e^2\right ) \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {1}{a d \sqrt {a+c x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x*(a + c*x^2)^(3/2)*(d + e*x + f*x^2)),x]

[Out]

1/(a*d*Sqrt[a + c*x^2]) - (a*(a*f^2 + c*(e^2 - d*f)) + c^2*d*e*x)/(a*d*(a*c*e^2 + (c*d - a*f)^2)*Sqrt[a + c*x^
2]) + (f*(2*e*(a*f^2 + c*(e^2 - 2*d*f)) - (e - Sqrt[e^2 - 4*d*f])*(a*f^2 + c*(e^2 - d*f)))*ArcTanh[(2*a*f - c*
(e - Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(
Sqrt[2]*d*Sqrt[e^2 - 4*d*f]*(a*c*e^2 + (c*d - a*f)^2)*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]) -
 (f*(2*e*(a*f^2 + c*(e^2 - 2*d*f)) - (e + Sqrt[e^2 - 4*d*f])*(a*f^2 + c*(e^2 - d*f)))*ArcTanh[(2*a*f - c*(e +
Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[
2]*d*Sqrt[e^2 - 4*d*f]*(a*c*e^2 + (c*d - a*f)^2)*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]) - ArcT
anh[Sqrt[a + c*x^2]/Sqrt[a]]/(a^(3/2)*d)

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 1017

Int[((g_.) + (h_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp
[((a + c*x^2)^(p + 1)*(d + e*x + f*x^2)^(q + 1)*(g*c*(2*a*c*e) + (-(a*h))*(2*c^2*d - c*(2*a*f)) + c*(g*(2*c^2*
d - c*(2*a*f)) - h*(-2*a*c*e))*x))/((-4*a*c)*(a*c*e^2 + (c*d - a*f)^2)*(p + 1)), x] + Dist[1/((-4*a*c)*(a*c*e^
2 + (c*d - a*f)^2)*(p + 1)), Int[(a + c*x^2)^(p + 1)*(d + e*x + f*x^2)^q*Simp[(-2*g*c)*((c*d - a*f)^2 - (-(a*e
))*(c*e))*(p + 1) + (2*(g*c*(c*d - a*f) - a*(-(h*c*e))))*(a*f*(p + 1) - c*d*(p + 2)) - e*((g*c)*(2*a*c*e) + (-
(a*h))*(2*c^2*d - c*((Plus[2])*a*f)))*(p + q + 2) - (2*f*((g*c)*(2*a*c*e) + (-(a*h))*(2*c^2*d - c*((Plus[2])*a
*f)))*(p + q + 2) - (2*(g*c*(c*d - a*f) - a*(-(h*c*e))))*(-(c*e*(2*p + q + 4))))*x - c*f*(2*(g*c*(c*d - a*f) -
 a*(-(h*c*e))))*(2*p + 2*q + 5)*x^2, x], x], x] /; FreeQ[{a, c, d, e, f, g, h, q}, x] && NeQ[e^2 - 4*d*f, 0] &
& LtQ[p, -1] && NeQ[a*c*e^2 + (c*d - a*f)^2, 0] &&  !( !IntegerQ[p] && ILtQ[q, -1])

Rule 1034

Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
= Rt[b^2 - 4*a*c, 2]}, Dist[(2*c*g - h*(b - q))/q, Int[1/((b - q + 2*c*x)*Sqrt[d + f*x^2]), x], x] - Dist[(2*c
*g - h*(b + q))/q, Int[1/((b + q + 2*c*x)*Sqrt[d + f*x^2]), x], x]] /; FreeQ[{a, b, c, d, f, g, h}, x] && NeQ[
b^2 - 4*a*c, 0] && PosQ[b^2 - 4*a*c]

Rule 6728

Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a +
b*x^n + c*x^(2*n)), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {1}{x \left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx &=\int \left (\frac {1}{d x \left (a+c x^2\right )^{3/2}}+\frac {-e-f x}{d \left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )}\right ) \, dx\\ &=\frac {\int \frac {1}{x \left (a+c x^2\right )^{3/2}} \, dx}{d}+\frac {\int \frac {-e-f x}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx}{d}\\ &=-\frac {a \left (a f^2+c \left (e^2-d f\right )\right )+c^2 d e x}{a d \left (a c e^2+(c d-a f)^2\right ) \sqrt {a+c x^2}}+\frac {\operatorname {Subst}\left (\int \frac {1}{x (a+c x)^{3/2}} \, dx,x,x^2\right )}{2 d}+\frac {\int \frac {-2 a c e \left (a f^2+c \left (e^2-2 d f\right )\right )-2 a c f \left (a f^2+c \left (e^2-d f\right )\right ) x}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx}{2 a c d \left (a c e^2+(c d-a f)^2\right )}\\ &=\frac {1}{a d \sqrt {a+c x^2}}-\frac {a \left (a f^2+c \left (e^2-d f\right )\right )+c^2 d e x}{a d \left (a c e^2+(c d-a f)^2\right ) \sqrt {a+c x^2}}+\frac {\operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+c x}} \, dx,x,x^2\right )}{2 a d}-\frac {\left (f \left (2 e \left (a f^2+c \left (e^2-2 d f\right )\right )-\left (e-\sqrt {e^2-4 d f}\right ) \left (a f^2+c \left (e^2-d f\right )\right )\right )\right ) \int \frac {1}{\left (e-\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+c x^2}} \, dx}{d \sqrt {e^2-4 d f} \left (a c e^2+(c d-a f)^2\right )}+\frac {\left (f \left (2 e \left (a f^2+c \left (e^2-2 d f\right )\right )-\left (e+\sqrt {e^2-4 d f}\right ) \left (a f^2+c \left (e^2-d f\right )\right )\right )\right ) \int \frac {1}{\left (e+\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+c x^2}} \, dx}{d \sqrt {e^2-4 d f} \left (a c e^2+(c d-a f)^2\right )}\\ &=\frac {1}{a d \sqrt {a+c x^2}}-\frac {a \left (a f^2+c \left (e^2-d f\right )\right )+c^2 d e x}{a d \left (a c e^2+(c d-a f)^2\right ) \sqrt {a+c x^2}}+\frac {\operatorname {Subst}\left (\int \frac {1}{-\frac {a}{c}+\frac {x^2}{c}} \, dx,x,\sqrt {a+c x^2}\right )}{a c d}+\frac {\left (f \left (2 e \left (a f^2+c \left (e^2-2 d f\right )\right )-\left (e-\sqrt {e^2-4 d f}\right ) \left (a f^2+c \left (e^2-d f\right )\right )\right )\right ) \operatorname {Subst}\left (\int \frac {1}{4 a f^2+c \left (e-\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {a+c x^2}}\right )}{d \sqrt {e^2-4 d f} \left (a c e^2+(c d-a f)^2\right )}-\frac {\left (f \left (2 e \left (a f^2+c \left (e^2-2 d f\right )\right )-\left (e+\sqrt {e^2-4 d f}\right ) \left (a f^2+c \left (e^2-d f\right )\right )\right )\right ) \operatorname {Subst}\left (\int \frac {1}{4 a f^2+c \left (e+\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {a+c x^2}}\right )}{d \sqrt {e^2-4 d f} \left (a c e^2+(c d-a f)^2\right )}\\ &=\frac {1}{a d \sqrt {a+c x^2}}-\frac {a \left (a f^2+c \left (e^2-d f\right )\right )+c^2 d e x}{a d \left (a c e^2+(c d-a f)^2\right ) \sqrt {a+c x^2}}+\frac {f \left (2 e \left (a f^2+c \left (e^2-2 d f\right )\right )-\left (e-\sqrt {e^2-4 d f}\right ) \left (a f^2+c \left (e^2-d f\right )\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \left (a c e^2+(c d-a f)^2\right ) \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )}}-\frac {f \left (2 e \left (a f^2+c \left (e^2-2 d f\right )\right )-\left (e+\sqrt {e^2-4 d f}\right ) \left (a f^2+c \left (e^2-d f\right )\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \left (a c e^2+(c d-a f)^2\right ) \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{a^{3/2} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 3.50, size = 497, normalized size = 0.94 \begin {gather*} \frac {-\frac {f \left (\frac {e}{\sqrt {e^2-4 d f}}+1\right ) \left (2 a f+c x \left (e-\sqrt {e^2-4 d f}\right )\right )}{a \sqrt {a+c x^2} \left (4 a f^2+c \left (e-\sqrt {e^2-4 d f}\right )^2\right )}-\frac {f \left (1-\frac {e}{\sqrt {e^2-4 d f}}\right ) \left (2 a f+c x \left (\sqrt {e^2-4 d f}+e\right )\right )}{a \sqrt {a+c x^2} \left (4 a f^2+c \left (\sqrt {e^2-4 d f}+e\right )^2\right )}+\frac {\sqrt {2} f^3 \left (\sqrt {e^2-4 d f}+e\right ) \tanh ^{-1}\left (\frac {2 a f+c x \left (\sqrt {e^2-4 d f}-e\right )}{\sqrt {a+c x^2} \sqrt {4 a f^2-2 c \left (e \sqrt {e^2-4 d f}+2 d f-e^2\right )}}\right )}{\sqrt {e^2-4 d f} \left (2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )\right )^{3/2}}+\frac {\sqrt {2} f^3 \left (\sqrt {e^2-4 d f}-e\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {a+c x^2} \sqrt {4 a f^2+2 c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {e^2-4 d f} \left (2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )\right )^{3/2}}+\frac {\, _2F_1\left (-\frac {1}{2},1;\frac {1}{2};\frac {c x^2}{a}+1\right )}{a \sqrt {a+c x^2}}}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x*(a + c*x^2)^(3/2)*(d + e*x + f*x^2)),x]

[Out]

(-((f*(1 + e/Sqrt[e^2 - 4*d*f])*(2*a*f + c*(e - Sqrt[e^2 - 4*d*f])*x))/(a*(4*a*f^2 + c*(e - Sqrt[e^2 - 4*d*f])
^2)*Sqrt[a + c*x^2])) - (f*(1 - e/Sqrt[e^2 - 4*d*f])*(2*a*f + c*(e + Sqrt[e^2 - 4*d*f])*x))/(a*(4*a*f^2 + c*(e
 + Sqrt[e^2 - 4*d*f])^2)*Sqrt[a + c*x^2]) + (Sqrt[2]*f^3*(e + Sqrt[e^2 - 4*d*f])*ArcTanh[(2*a*f + c*(-e + Sqrt
[e^2 - 4*d*f])*x)/(Sqrt[4*a*f^2 - 2*c*(-e^2 + 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[e^2 - 4*d
*f]*(2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f]))^(3/2)) + (Sqrt[2]*f^3*(-e + Sqrt[e^2 - 4*d*f])*ArcTanh[(
2*a*f - c*(e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[4*a*f^2 + 2*c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])
])/(Sqrt[e^2 - 4*d*f]*(2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f]))^(3/2)) + Hypergeometric2F1[-1/2, 1, 1/
2, 1 + (c*x^2)/a]/(a*Sqrt[a + c*x^2]))/d

________________________________________________________________________________________

IntegrateAlgebraic [C]  time = 0.95, size = 552, normalized size = 1.05 \begin {gather*} \frac {\text {RootSum}\left [\text {$\#$1}^4 f-2 \text {$\#$1}^3 \sqrt {c} e-2 \text {$\#$1}^2 a f+4 \text {$\#$1}^2 c d+2 \text {$\#$1} a \sqrt {c} e+a^2 f\&,\frac {\text {$\#$1}^2 c d f^2 \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )-\text {$\#$1}^2 c e^2 f \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )-\text {$\#$1}^2 a f^3 \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )+a^2 f^3 \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )-4 \text {$\#$1} c^{3/2} d e f \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )+2 \text {$\#$1} c^{3/2} e^3 \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )-a c d f^2 \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )+a c e^2 f \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )+2 \text {$\#$1} a \sqrt {c} e f^2 \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )}{2 \text {$\#$1}^3 f-3 \text {$\#$1}^2 \sqrt {c} e-2 \text {$\#$1} a f+4 \text {$\#$1} c d+a \sqrt {c} e}\&\right ]}{d \left (a^2 f^2-2 a c d f+a c e^2+c^2 d^2\right )}+\frac {2 \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a}}-\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{a^{3/2} d}+\frac {-a c f+c^2 d-c^2 e x}{a \sqrt {a+c x^2} \left (a^2 f^2-2 a c d f+a c e^2+c^2 d^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/(x*(a + c*x^2)^(3/2)*(d + e*x + f*x^2)),x]

[Out]

(c^2*d - a*c*f - c^2*e*x)/(a*(c^2*d^2 + a*c*e^2 - 2*a*c*d*f + a^2*f^2)*Sqrt[a + c*x^2]) + (2*ArcTanh[(Sqrt[c]*
x)/Sqrt[a] - Sqrt[a + c*x^2]/Sqrt[a]])/(a^(3/2)*d) + RootSum[a^2*f + 2*a*Sqrt[c]*e*#1 + 4*c*d*#1^2 - 2*a*f*#1^
2 - 2*Sqrt[c]*e*#1^3 + f*#1^4 & , (a*c*e^2*f*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1] - a*c*d*f^2*Log[-(Sqrt[c
]*x) + Sqrt[a + c*x^2] - #1] + a^2*f^3*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1] + 2*c^(3/2)*e^3*Log[-(Sqrt[c]*
x) + Sqrt[a + c*x^2] - #1]*#1 - 4*c^(3/2)*d*e*f*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1 + 2*a*Sqrt[c]*e*f^
2*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1 - c*e^2*f*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1^2 + c*d*f^
2*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1^2 - a*f^3*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1^2)/(a*Sqrt
[c]*e + 4*c*d*#1 - 2*a*f*#1 - 3*Sqrt[c]*e*#1^2 + 2*f*#1^3) & ]/(d*(c^2*d^2 + a*c*e^2 - 2*a*c*d*f + a^2*f^2))

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(c*x^2+a)^(3/2)/(f*x^2+e*x+d),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(c*x^2+a)^(3/2)/(f*x^2+e*x+d),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.02, size = 1945, normalized size = 3.70

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(c*x^2+a)^(3/2)/(f*x^2+e*x+d),x)

[Out]

4*f^3/(e+(-4*d*f+e^2)^(1/2))/(-4*d*f+e^2)^(1/2)/(2*a*f^2-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)*c*e)/((x+1/2*(e+(-4*
d*f+e^2)^(1/2))/f)^2*c-(e+(-4*d*f+e^2)^(1/2))*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)*c/f+1/2*(2*a*f^2-2*c*d*f+c*e^2+
(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2)+8*f^2/(e+(-4*d*f+e^2)^(1/2))*c^2/(2*a*f^2-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)*
c*e)/(4*a*c-4*c^2*d/f+c^2*e^2/f^2-(-4*d*f+e^2)*c^2/f^2)/((x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-(e+(-4*d*f+e^2)^
(1/2))*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)*c/f+1/2*(2*a*f^2-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2)*x+8*
f^2/(e+(-4*d*f+e^2)^(1/2))/(-4*d*f+e^2)^(1/2)*c^2/(2*a*f^2-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)*c*e)/(4*a*c-4*c^2*
d/f+c^2*e^2/f^2-(-4*d*f+e^2)*c^2/f^2)/((x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-(e+(-4*d*f+e^2)^(1/2))*(x+1/2*(e+(
-4*d*f+e^2)^(1/2))/f)*c/f+1/2*(2*a*f^2-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2)*e*x-4*f^3/(e+(-4*d*f+e
^2)^(1/2))/(-4*d*f+e^2)^(1/2)/(2*a*f^2-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)*c*e)*2^(1/2)/((2*a*f^2-2*c*d*f+c*e^2+(
-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2)*ln((-(e+(-4*d*f+e^2)^(1/2))*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)*c/f+(2*a*f^2-2*
c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)*c*e)/f^2+1/2*2^(1/2)*((2*a*f^2-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2)
*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*(e+(-4*d*f+e^2)^(1/2))*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)*c/f+2*(2*a*
f^2-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))+4*f^3/(-e+(-4*d*f+e^2)
^(1/2))/(-4*d*f+e^2)^(1/2)/(2*a*f^2-2*c*d*f+c*e^2-(-4*d*f+e^2)^(1/2)*c*e)/((x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)^2
*c-(e-(-4*d*f+e^2)^(1/2))*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)*c/f+1/2*(2*a*f^2-2*c*d*f+c*e^2-(-4*d*f+e^2)^(1/2)*
c*e)/f^2)^(1/2)-8*f^2/(-e+(-4*d*f+e^2)^(1/2))*c^2/(2*a*f^2-2*c*d*f+c*e^2-(-4*d*f+e^2)^(1/2)*c*e)/(4*a*c-4*c^2*
d/f+c^2*e^2/f^2-(-4*d*f+e^2)*c^2/f^2)/((x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)^2*c-(e-(-4*d*f+e^2)^(1/2))*(x-1/2*(-e
+(-4*d*f+e^2)^(1/2))/f)*c/f+1/2*(2*a*f^2-2*c*d*f+c*e^2-(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2)*x+8*f^2/(-e+(-4*d*f+
e^2)^(1/2))/(-4*d*f+e^2)^(1/2)*c^2/(2*a*f^2-2*c*d*f+c*e^2-(-4*d*f+e^2)^(1/2)*c*e)/(4*a*c-4*c^2*d/f+c^2*e^2/f^2
-(-4*d*f+e^2)*c^2/f^2)/((x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)^2*c-(e-(-4*d*f+e^2)^(1/2))*(x-1/2*(-e+(-4*d*f+e^2)^(
1/2))/f)*c/f+1/2*(2*a*f^2-2*c*d*f+c*e^2-(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2)*e*x-4*f^3/(-e+(-4*d*f+e^2)^(1/2))/(
-4*d*f+e^2)^(1/2)/(2*a*f^2-2*c*d*f+c*e^2-(-4*d*f+e^2)^(1/2)*c*e)*2^(1/2)/((2*a*f^2-2*c*d*f+c*e^2-(-4*d*f+e^2)^
(1/2)*c*e)/f^2)^(1/2)*ln((-(e-(-4*d*f+e^2)^(1/2))*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)*c/f+(2*a*f^2-2*c*d*f+c*e^2
-(-4*d*f+e^2)^(1/2)*c*e)/f^2+1/2*2^(1/2)*((2*a*f^2-2*c*d*f+c*e^2-(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2)*(4*(x-1/2*
(-e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*(e-(-4*d*f+e^2)^(1/2))*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)*c/f+2*(2*a*f^2-2*c*d
*f+c*e^2-(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2))/(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f))-4*f/(-e+(-4*d*f+e^2)^(1/2))/(e
+(-4*d*f+e^2)^(1/2))/a/(c*x^2+a)^(1/2)+4*f/(-e+(-4*d*f+e^2)^(1/2))/(e+(-4*d*f+e^2)^(1/2))/a^(3/2)*ln((2*a+2*(c
*x^2+a)^(1/2)*a^(1/2))/x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{{\left (c x^{2} + a\right )}^{\frac {3}{2}} {\left (f x^{2} + e x + d\right )} x}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(c*x^2+a)^(3/2)/(f*x^2+e*x+d),x, algorithm="maxima")

[Out]

integrate(1/((c*x^2 + a)^(3/2)*(f*x^2 + e*x + d)*x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{x\,{\left (c\,x^2+a\right )}^{3/2}\,\left (f\,x^2+e\,x+d\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*(a + c*x^2)^(3/2)*(d + e*x + f*x^2)),x)

[Out]

int(1/(x*(a + c*x^2)^(3/2)*(d + e*x + f*x^2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{x \left (a + c x^{2}\right )^{\frac {3}{2}} \left (d + e x + f x^{2}\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(c*x**2+a)**(3/2)/(f*x**2+e*x+d),x)

[Out]

Integral(1/(x*(a + c*x**2)**(3/2)*(d + e*x + f*x**2)), x)

________________________________________________________________________________________